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Think about this before reading further. 

Solid Geometry: 

Wood Sculptures 

by Kosticks 
by Ken Fan 

edited by Jennifer Silva 

 

Art and geometry combine in the minds 

of John and Jane Kostick.  The result is 

a collection of wondrous wood 

sculptures that manifest a wealth of 

interesting mathematical facts. 

The best way to get a feel for 

this mix of math and art is to play with 

an actual example, and that’s just what 

we’ll do.  This article contains all you 

need to make your own paper model of 

one of the Kosticks’ latest creations: the Quintetra Assembly. 

 

Inspiration  To appreciate the elegance of the Quintetra Assembly, it helps to think about a few 

more basic shapes with special focus on the directions of their edges.  Let’s start with a cube, 

paying particular attention to its 12 edges.  Notice that the edges of a cube point in 1 of 3 

different directions, just like the axes of a 3D Cartesian coordinate system. 

 This observation raises the following question: What solids have all of their edges 

restricted to the same 3 directions as the edges of a cube?  Because this restriction is severe, we 

can get a very good idea of what these shapes look like with a little bit of experimentation.  Any 

brick shape is possible, and so is any solid built by joining bricks together, provided that all of 

the bricks are consistently oriented to respect the restriction on edge directions.  Of these shapes, 

only the isolated brick will be convex, and of these bricks, the cube is the most symmetric and is 

the only convex one with edges all of the same length.  (A shape is convex if it contains the line 

segment joining any two of its points.  For example, a circular disk is convex, but an annulus is 

not.) 

 Let’s make a game of this, now using a different set of allowed directions: the 4 

directions specified by the major diagonals of a cube.  The major diagonals are the line 

segments that connect opposite vertices.  What shapes can you find whose edges are each 

parallel to one of these 4 directions?  Note that if we use only 2 of the 4 directions to travel in a 

circuit by moving in one direction, then the other, then back in the first direction, then back to 

the starting point in the second direction, we will trace out a parallelogram.  Also, keep in mind 

that if we wish to stay within a plane, we have to restrict ourselves to using just 2 of the 4 

directions.  Therefore, such solids, if convex, must have faces that are parallelograms.  By 

analyzing the angles between pairs of directions, we find that these parallelograms involve 2 

specific angles, namely cos-1 1/3 ≈ 70.5° and its supplement, cos-1 -1/3 ≈ 109.5°. 

 Is there an equilateral convex solid whose edges are each parallel to one of the 4 major 

diagonals of a cube?  If such a shape existed, all of its faces would have to be congruent rhombi. 

 

 

Continued on page 3 
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Restrict yourself to the directions defined by the diagonals 

of the faces of a fixed cube.  Find an equilateral convex 

solid whose edges each run parallel to one of these 6 

directions. 
A rhombic dodecahedron. 

Solid Geometry: Wood Sculptures by Kosticks, continued 

 

There is such a solid, and it is called a rhombic dodecahedron. 

 A nonconvex example of a shape whose edges are all 

parallel to the 4 major diagonals of a cube is the Kosticks’ 

Tetraxis puzzle.  The name comes from the fact that the edge 

directions are parallel to the 4 major diagonals of a cube.  The 

video Tetraxis Geometry visually explains the geometry of the 

rhombic dodecahedron and Tetraxis.  You can watch it on the 

Girls’ Angle YouTube channel. 

 

 

 

 

 

A Leap of Imagination  We’re ready to explain the Quintetra Assembly.  Instead of exploring 

shapes whose edges are all parallel to a fixed set of 3 or 4 directions, as we have done so far, the 

Kosticks explored shapes whose edges are parallel to a fixed set of 30 directions! 

 What 30 directions?  Start with a regular dodecahedron.  A 

regular dodecahedron is one of the five Platonic solids.  It has 12 

faces that are congruent regular pentagons, with 20 vertices and 30 

edges.  Three edges emanate from every vertex.  To get a good 

feeling for the shape, build one!  If you make 12 copies of the 

regular pentagon shown at left, you will find that the dodecahedron 

practically assembles itself because there is little choice for how to 

put the faces together.  You can also turn to page 11 of Volume 3, 

Number 4 of this Bulletin and find the net of a regular 

dodecahedron that you can print out and fold. 

 The 20 vertices of the dodecahedron can be grouped into 5 sets of 4 vertices each.  In 

each set, the 4 vertices are the vertices of a regular tetrahedron.  If done properly, each of the 5 

vertices of any pentagonal face will belong to a different 

tetrahedron.  A tetrahedron has 6 edges, so these 5 

tetrahedra collectively have 30 edges.  These 30 edges 

represent the 30 directions to which the Kosticks 

restricted their explorations. 

 The Kosticks managed to discern the amazing 

equilateral convex polyhedron1 shown at right.  By 

construction, each of its edges runs parallel to one of the 

30 directions.  The polyhedron consists of 20 equilateral 

triangular faces and 60 congruent rhombic faces.  It has 

72 vertices and 150 edges.  The centers of the triangular 

faces form the vertices of a regular dodecahedron, and the 

rhombi are laid out like a path between the triangles.  

Most of the vertices are surrounded by 3 rhombi and a 

triangle, but at 12 of the vertices, 5 rhombi come together to 

form 5-pointed stars.  These 12 special vertices form the 

vertices of a regular icosahedron. 

 

                                                 
1 According to John Kostick, Zometool is a terrific aid to explore possibilities. 

An equilateral polyhedron with 60 

congruent rhombic faces and 20 

triangular faces. 



© Copyright 2014 Girls’ Angle.  All Rights Reserved. 

 

 In order to make a model of this polyhedron, the 

Kosticks had to compute the angles of the rhombic face.  

One way to find the angles is to determine which of the 

30 directions correspond to the adjacent sides of a 

rhombic face and compute the angle between those 2 

directions.  I’ll sketch another way to find these angles 

that enables computation of the Cartesian coordinates of 

all vertices.  To follow this approach, you need to be 

comfortable with trigonometry, vectors, and matrices. 

 The figure at left shows part of the Quintetra 

Assembly.  Let φ = (1 5) / 2 .  Vertices V and W are 2 

of the 12 vertices where 5 rhombi meet.  These 12 

vertices form the vertices of an icosahedron.  We exploit 

the fact that the 12 points whose Cartesian coordinates are (±1, 0, ±φ), (±φ, ±1, 0), and (0, ±φ, 

±1) are the vertices of an icosahedron (where all possible combinations of signs are taken).  

Without loss of generality, we may assume that V = (1, 0, φ) and W = (-1, 0, φ). 

 The 180° rotation about the line that passes through the origin and the midpoint of 

segment VW interchanges P’ and Q’.  Therefore, segment P’Q’ is parallel to the planes that are 

perpendicular to the axis of rotation, which include the xy-coordinate plane.  That is, P’ and Q’ 

have the same z-coordinate.  Because VPQ’P’ and WQP’Q’ are rhombi, we know that PV and 

WQ are parallel to P’Q’.  Hence, P, V, Q, and W all have the same z-coordinate, which is φ.  Let 

P = (x, y, φ).  We seek x and y.  By symmetry, we know that Q = (-x, -y, φ). 

 The 72° rotation about the line that passes through the origin and V in the direction 

indicated by the blue arrow sends P to P’.  We use this fact to express the coordinates of P’ in 

terms of the coordinates of P.  After some linear algebra, we find 

 

1 1 1 4 3
' , ,

2 2 2 2 2 2 2 2 2 4

x y
P y x y x

   

  

 
        

 
. 

 

 Next, we use the fact that Q’P’ is parallel to and the same length as PV.  This can be 

expressed by saying that the vector that points from Q’ to P’ is the same as the vector that points 

from P to V.  When this condition is expressed mathematically and simplified, we arrive at the 

following system of linear equations in the unknowns x and y: 
 

2x + φy = 0 

x – y = 1 
 

Solving these for x and y and substituting into our expressions for P and P’, we find 
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From these, we can compute the angle P’VP (for instance, by using the dot product).  We find 

that angle P’VP = cos-1 (φ/4), which is approximately 66.14°. 

 

Jane went beyond understanding the surface of the polyhedron.  She designed a unique 

block, called the Quintetra block, from which the polyhedron can be built.  The Quintetra block 

consists of 4 rhombic faces, 2 pentagonal faces, and 1 parallelogram face.  It takes 30 Quintetra 

blocks to build the polyhedron. 
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Photo courtesy of the Kosticks 

 

The Kosticks’ Quintetra Assembly. 

 

The lower left image shows the Kosticks’ Quintetra block in 3 different types of wood.  The 

image on the right shows the completed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Take It To Your World  Make 30 

copies of the net shown at right.  

Cut on the solid lines and fold on 

the dotted lines.  Glue or tape the 

blocks together so that the dark 

circles connect to the light circles. 

 

Angles  The table below gives the 

measures of angles in the net.  If an 

angle is unmarked, it is part of a 

parallelogram with a marked angle. 

  

Angle 
Exact 

Measure 

Degrees 

(approx.) 

A cos-1(φ/4) 66.14° 

B cos-1(1/4) 75.52° 

C 60° 60° 

D 
cos-1((1 – 

3φ)/4) 
164.48° 

E 210° – D/2 127.76° 

F tan-1 5  65.91° 
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More Amazing Facts  We urge you to build the model.  It will help you to follow the remainder 

of this article. 

There are 20 dimples in the Quintetra Assembly.  Recall that all edges of the polyhedron 

run parallel to the directions determined by the 30 edges of the 5 regular tetrahedra obtained 

from the 20 vertices of a regular dodecahedron.  If you extend a tetrahedron’s edges beyond its 

vertices, you will form “inverted” tetrahedra, and if you extend the edges of these 5 direction-

determining tetrahedra, you get the dimples of the Quintetra Assembly! 

 If you pick out one of the triangular faces T, you can walk from it to 3 other triangular 

faces on a path of rhombi that each contain edges parallel to the sides of T.  These 3 triangular 

faces, brought together with T (without changing their orientation), will make a regular 

tetrahedron. 

 To explain our last observation, we must describe the rhombic triacontahedron.  A 

rhombic triacontahedron is a solid with 30 congruent golden rhombi for faces.  A golden 

rhombus is formed by connecting the midpoints of the sides of a golden rectangle.  A golden 

rectangle is a rectangle with a unique property: if you chop off the largest square possible from 

one side, the leftover piece will be a rectangle with the same proportions as the original. 

 Let’s walk backwards through these definitions in more 

detail.  Shown at left is an x by y rectangle.  A vertical line is 

drawn inside to mark the left edge of an x by x square.  The 

defining property of a golden rectangle is that the x by y – x 

rectangle that remains after removing the x by x square is similar 

to the x by y rectangle.  That is, x : y – x = y : x.  Cross-

multiplying, we get x2 = y(y – x), or (y/x)2 – (y/x) – 1 = 0.  This is a 

quadratic equation in y/x.  Since the ratio is positive, we find that 

y/x = φ. 

Now that we know the exact proportions of a golden rectangle, 

we can illustrate a fine example, shown at right.  To get the golden 

rhombus, we connect the midpoints of the 4 sides as shown below left.  

We cut along the lines.  The result is the golden rhombus shown at right.  

Show that the smaller angle in the golden rhombus has a measure of 

tan-1 2, which is about 63.435°. 

 To build a rhombic triacontahedron, 

make 30 of these golden rhombi, all the same 

size.  Join them edge-to-edge to build a 3-

dimensional solid.  As you join the faces, like 

angles should meet like angles: 5 golden 

rhombi meet at each acute-angled vertex, and 3 meet at each 

obtuse-angled vertex. 

 What was the point of describing the rhombic 

triacontahedron?  The interior of the Quintetra Assembly is 

empty.  Amazingly, this space will snugly receive a rhombic 

triacontahedron!  So snug is the fit that each of the rhombic 

triacontahedron’s faces will be flush with the inside face of a 

Quintetra block.  For a challenge, prove this fact and find the 

exact size relationship needed for a snug fit. 

 

 For more examples of the Kosticks’ work and to learn 

more about the fascinating properties of the Quintetra Assembly, 

visit their website at www.kosticks.com. 

 
Photo courtesy of Jane Kostick 

 

A rhombic triacontahedron built 

by Jane Kostick. 

 

http://www.kosticks.com/

